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Uniformity Assumption

Many segmentation procedures are based on a uniformity assumption:
 meaningful objects correspond to regions which satisfy a uniformity predicate
- region finding
* object boundaries correspond to discontinuities of a uniformity predicate
- edge finding

Typical uniformity predicates:

» greyvalues within a narrow interval (e.g. in B/W images)

e similar colour

* small greyvalue gradient

* uniform statistical properties (e.g. local distribution, texture)
* smoothness in 3D
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Region Growing

Regions which satisfy a uniformity criterion may be grown from seed regions
based on two criteria:

1. Merge region with new area if merged region satisfies uniformity
criterion.

E.g. greyvalue variance remains limited
2. Merge region with new area if boundary area satisfies a merging criterion.
E.g. boundary area has weak edges

Problem with (1): Large regions may be merged with small patches even if the
patches are distinctly different.

Problem with (2): Distinct large regions may be merged if they are connected by a
weak boundary.
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Segmentation into Regions using Histograms

Basic idea:

Recursive histogram decomposition:

e compute 1D histograms of pixel features (e.g. R, G, B histograms)
e use "clearest" histogram for decomposition into regions
e apply procedure recursively to individual regions

Problems:

e histograms do not reflect neighbourhood relationships
e  histograms may not show multimodality clearly

e bad early decisions cannot be corrected
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Region Segmentation by
Split-and-merge

Region boundaries are determined along quadtree region boundaries.

e Begin with an arbitrary region decomposition in a
quadtree plane

e Split each region which violates a uniformity
predicate into its 4 quadtree sons

e Merge (recursively) all regions which jointly satisfy

a uniformity criterion

Supportingdata structure:

Region adjacency graph
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Maximum-likelihood Edge Finding
Hypothesis test about the likelihood of a boundary

between two regions D, and D, 0

H,. Pixels from D; and D, stem from the same statistical source N(u,, ).

H,,: Pixels from D; and D,stem from different statistical sources N(u;, ;) and N(i,, o).

Maximum-likelihood decision chooses hypothesis H, for which
P(g;;are observed | H, is true) is maximal.

Step 1: Maximum-likelihood estimation ofu,, oy, u;, 0;, u,, 0,, D,=D,; U D,
_ 1
uk-‘;E&] E(&J &) k=012
k| g.:€D, €D
ij gz] k
Step 2: Determine likelihood quotlent
HP(gIHO) ol ~D
$ED, -1 jl> Decision (7| ! (7|2 ! Xk
> 9 determined
HP(g I le)HP(g |H\,) rule: (’)\—LDO| empirically
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Greyvalue Discontinuities

Edges may be localized via the 1. and 2. derivative of the greyvalue function.
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Are Edges Object Boundaries?

Four reasons for edges in images:

1. Discontinuities of physical object surface properties

e.g. colour, material, smoothness ("reflectivity")

2. Discontinuities of object surface orientation
towards observer

e.g. strong curvature, 3D-edges, specularities

3. Discontinuities of illumination 2

e.g. shadows, secondary illumination

4. Discretization effects

e.g. binarisation
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Edges in Real-World Images

Image of Michaelis Church in Hamburg
(thanks to Wolfgang Forstner)

Consider vertical edge with lamps left and
right:

In the lower part, the region left of the
edge is darker than the region right of the
edge, in the upper part vice versa.

= In between, the edge must have no
contrast at all!
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Robert’s Cross Operator

Computesthe gradient based on crosswise
greyvalue differences

Gradient magnitude:

|Vgij| = \/(gi i1~ 8 j)2 +(8— 8 j-1)2

z|gij—1 _gi—1j|+|gij_gi—1j-1| o
approximations

2

~ max{|g,. i1~ 8im1j| »|8ij ™ 8in J'-1|}

Gradient direction:

8i;~ 811
8ii1 81

tany = direction angle y in coordinate system rotated by 45°
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Sobel Operator

Popularoperator containedin mostimage processing software packages

— X
gs |86 | 87 e Computes gradient components Axand Ay based
on pixels taken from a 3x3 neighbourhood.
8+ | 8 | 8o ) )
e Performssimultaneous smoothing

83 |82 |81
}
Y Ag, =(8+28,+8;)~ (8 +28,+8;)

Partial derivatives:
Ag, =(g +28 +8)— (g, +28; +5s)

Gradient magnitude: ‘Vgij‘=\/Agf+A8§

Agy

Gradientdirection: tan y =
Ag,
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Example for Sobel Operator

g(x, y)

greyvalue image x-component of y-component of
greyvalue gradient greyvalue gradient

0 = black

255 = white 0 =greyvalue 128 0 =greyvalue 128
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Kirsch Operator

Another popularoperator e Computesgradient magnitudein 8
— X directions, selects maximum
&5 |86 | &7 e Performssimultaneous smoothing
g4 | 8i | &o
g3 |82 | &1
!
Y
Gradient magn.: |Vg,-j| = k=(1)1.}73}n)§d8{3(8k T 8k T 8k2 T 8z T gk+4) B S(gk+5 T 86 T gk+7)}

Gradientdirection: y =(90°+k,,. -45°)mod 360°

Example:
kmax Ty 7
) y=(90°+7-45°)mod 360° = 45°

S
N
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Laplacian Operator

g g Orientation-independent measure for the strength of the
second derivative of a greyvalue function

Discrete approximation by differences of differences of greyvalues:

Vzgi,j = (gi+1,j _gi,j)_(gi,j _gi—l,j)
+ (gi,j+1 _gi,j)_(gi,j _gi,j—l)

=8in,j T8 T 8ijm T8ija— 4gi,j

8i-1j-1 8ij-1|| &i+1j-1

8i-1j 8ij 8i+lj

"difference between the greyvalue of a point and
the average of its surrounding"

8i-1j+1 | | 8ij+1|| 8i+1j+1

v . Lh
P a . e

Using the Laplacian operator on raw images will
typically give unacceptable results since the 2.
derivative amplifies noise. (A single isolated point
generates the maximal response.)
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Marr-Hildreth Operator

Locates edges at zero crossings of second derivative of smoothed image

Laplacian of Gaussian (LoG): Vv: (f(x,y,G) g g(x,y))
_)C2+y2

with Gaussian filter: f(x,y)=¢ 2°

Interchanging the order of differentiation and convolutionin the LoG gives
V2 (f(x,y,0))* g(x,y) = h(x,y)* g(x,y)

4 elements to zero

2 2 2 x%+y? :
h(x,y) = C(x ty -0 )e_ 202 ¢ normalizes the sum of mask
,Y) =

(0}

Nickname: Mexican Hat Operator
O 0 -1 0 O " ?
discrete 5x 5 0 -1 -2 -1 0

approximation: | ! -2 16 -2 -l
o -1 -2 -1 O

0O 0 -1 0 O
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Difference of Gaussians (DoG)

The Marr-Hildreth Operator can be approximated

by the difference of 2 Gaussians: f
1
h(xa y) = ﬁ(xa y) - ﬁ(xa y) 1-D DoG

/2

The best approximation of the Laplacianis foro, = 1.6 o,

original result of DoG filtering

image with 0']:], 0-2:].6
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Canny Edge Detector |

Optimal edge detector for step edges corrupted by white noise.

Optimality criteria:
e Detection of all important edges and no spurious responses

e Minimal distance between location of edge and actual edge
e Oneresponse per edge only

1. Derivation for 1D results in edge detection filter which can be effectively
approximated (< 20% error) by the 1st derivative of a Gaussian smoothing filter.

2. Generalization to 2D requires estimation of edge orientation:

. V(f*g) n norma.ﬂ perpendic.:ular.to edge
n= V—* f Gaussian smoothing filter
‘ (f g)‘ g greyvalueimage

Edge is located at local maximum of g convolved with fin direction ;:
2
% *g=0 "non-maximal suppression”
n
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Canny Edge Detector Il

Algorithm includes

— choice of scaleo
— hysteresis thresholding to avoid streaking (breaking up edges)

— "feature synthesis" by selecting large-scale edges
dependent on lower-scale support

Convolve image g with Gaussian filter fof scale o

Estimate local edge normal direction y for each pointinthe image
Find edge locations using non-maximal suppression

Compute magnitude of edges

Threshold edges with hysteresis to eliminate spurious edges

Repeat steps (1) through (5) for increasingvalues of o

B = W N =

Aggregate edges at multiple scales using feature synthesis
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Examples for Canny Edge Detector

%M

ﬁ’ﬁ’“—»

original Canny operator ¢ = 1.0 Canny operator ¢ = 2.8
(without feature synthesis)
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Watershed Segmentation

Basic idea:

* Determinegradient magnitude "image" and visualizeitasa 3D
topographic map with small gradient values as low areas and large

gradient values as hills.
 Determinewatershed linesand record them as region boundaries

Typical resultis an over-segmentation, can be reduced by region merging.
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Principle of Watershed Computation

A watershed isthe line between drainage basins where water is equally likely
to flow down into either basin.

Idea for computing watersheds [Vincent and Soille 91]:
* Determine local minima as basin seed points

* Assume holes drilled at seed points and a water level rising from below, filling
basins

» Establish watershed lines (= region boundaries) atlocations where separate basins
merge

1D-lllustration

1 T
Agl Ag] |
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Determining Watershed Lines

Assume that two basins are separate at step n-1 and merge at step n:

)&,

- oh w-h
- b ow-h
- b owd

J(n-1)

C 1 Cj(n—l) CW

* Determine watershed pixels by dilation of
the binary componentimage /) using
structuringelement S until regions overlap.

* Restrictdilationsothatcenterof Sis only
in C,™.
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Subpixel Watershed Segmentation

(Meine and Koethe 05)

1. Generatecontinuousimage
by splineinterpolation between &
pixels of original image

2. Determinegradient magnitude image
by differentiatingthe (analytical)
continuousimage

. - 5 » X
Trace maximain gradient image (watersheds) 5th order spline interpolation

4. Remove weak edges

4
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Applications in Manuscript Analysis |
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segment of dead-sea scrolls subpixel watershed segmentatlon
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Applications in Manuscript Analysis Il

Original Subpixel Watershed Contours
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